

Kirgella Gift: Thick gold intercepts defined from 3m beneath surface.

Highlights:

- Comprehensive appraisal of gold mineralisation completed at Kirgella Gift and Providence following successful drilling late 2023.
- Strong similarities to deposits at Rebecca Gold Project 21 km to the south (Ramelius Resources, ASX:RMS), where gold mineralisation is hosted within larger, **broad zones of gold anomalism** defined by a 0.1 g/t Au cut-off. Newly defined intercepts of this type (containing previously reported intercepts) include:
 - KGRC013: 32 m at 1.29 g/t Au from 3 m depth

(containing 4 m at 3.29 g/t Au from 16 m);

• KGRC23001: 35 m at 1.15 g/t Au from 11 m depth

(containing 4 m at 2.91 g/t Au from 16 m); and

o KGRC004: 45 m at 2.36 g/t Au from 51 m depth

(containing 33 m at 3.10 g/t Au from 51 m).

- By defining these anomalous zones, three thick gold lodes are recognised at Kirgella Gift, and two at Providence. Numerous, thinner, less continuous lodes are also evident in the footwall and hanging wall.
- Active program underway to advance to an initial JORC Code (2012) Mineral Resource Estimate at Kirgella Gift
- Further drilling planned at Pinjin in **2Q CY2024** to test new targets.

Kalgoorlie Gold Mining (ASX:KAL), KalGold' or 'the Company'), is pleased to provide an update on the Kirgella Gift and Providence prospects within the Pinjin project, around 140 km east of Kalgoorlie-Boulder.

KalGold Managing Director Matt Painter said:

"As gold prices surge, we believe that there is a clear pathway for KalGold to access its gold resources to realise maximum benefit for shareholders. The Company is defining thick, shallow gold mineralisation within our projects that is either outcropping (at La Mascotte deposit near Kalgoorlie) or near surface (at Kirgella Gift and Providence, Pinjin). This provides a unique and exciting opportunity for inexpensive free digging into highly prized oxide gold mineralisation for rapid monetisation of the Company's gold assets.

KalGold has undertaken a full reassessment of the Kirgella Gift and Providence gold prospects. We draw strong comparisons to the gold deposits of the Rebecca Project 21 km along strike to the south, where discoverer Apollo Consolidated (ASX:AOP) reported extensive anomalous gold mineralisation as a halo to higher grade mineralisation.

We are focused on defining a shallow, first-pass JORC Code (2012) Mineral Resource Estimate (MRE) at Kirgella Gift in the Pinjin Gold Project to advance assessment for open pit gold mining."

KalGold has completed a full assessment of the Kirgella Gift and Providence gold system at Pinjin incorporating all data from its three drill programs to date. With completion of the November 2023 drill program well ahead of schedule, the Company is progressing towards defining low-cost, shallow gold resources throughout the region.

Parallels with known gold deposits of the region.

Strong parallels are recognised between the style of gold mineralisation at Kirgella Gift and Providence and gold mineralisation documented at the Rebecca and Anglo Saxon deposits.

Although host rock types vary, important common factors include deposit geometries, lithological contrasts, rheological contrasts, and the shear-hosted style of gold mineralisation. Potentially economic, higher gold grades are hosted within extensive, thick, coherent, anomalous zones. These anomalous zones are defined at lower cut-off values than typical intercepts and facilitate modelling to track the overarching trend of the deposit.

"anomalous zones" Sub-grade are well documented at the 1.4 Moz Rebecca gold deposit (rameliusresources.com.au/rebeccagold-project/, 15/3/2024) where the discoverer Apollo Consolidated described "structures to 30m true width flanked by widespread 0.20-0.50g/t Au halo" (AOP ASX announcement, "Lake Rebecca Gold Project - Advancing on all fronts", 4 Aug 2021) prior to the project's sale to Ramelius Resources in late 2021. On many published sections, grade is shown to vary along strike and down-dip, with strong mineralisation encased within gold an anomaly envelope (e.g. Figure 2). These anomalous zones are a key locator to vector in towards gold mineralisation in the region. KalGold has now adopted this approach (for comparison purposes) to model gold mineralisation throughout the Pinjin Gold Project.

Figure 1 – Location of the Kirgella Gift and Providence prospects within KalGold's Pinjin Project, just 25 km north of Ramelius Resources' Rebecca Gold Project. Projection MGA 94 Zone 51.

Figure 2 – Reproduced, published cross sections of the Rebecca deposit (6641680mN section, top) and the Duchess deposit (6637200mN section, bottom) at the Rebecca Gold Project (now owned by Ramelius Resources), located 21km south of, and along strike from, KalGold's Pinjin Project. Comparison of these sections with Kirgella Gift in particular shows strong similarities, with well-mineralised intervals at Rebecca and Duchess (pinks and reds) shown encased by lower-grade gold anomalism (yellow). Of interest here is that, at both deposits, near-surface anomalism (top right, yellow) gives way to strong gold mineralisation down dip (centre, pink), a characteristic of the gold deposits for which KalGold will be testing at Kirgella Gift, Providence, and other targets throughout the Pinjin Project. Sourced from AOP ASX announcement, "Lake Rebecca Gold Project – Advancing on all fronts", Slides 9 and 12, 4 Aug 2021. Images have been extracted directly from the PDF of the ASX-published document without modification. Poor resolution and illegibility of coordinates is as presented in the original document.

A new view of Kirgella Gift and Providence

By looking at KalGold's dataset through a "Rebecca-style" lens, we have identified key features of the mineralising system that aid further exploration and resource definition. This includes:

- Three main zones of gold mineralisation at Kirgella Gift; and
- Two main zones of gold mineralisation at Providence

In addition to these main zones, numerous footwall and hanging wall lodes are clearly evident, showing varying degrees of lateral continuity. A structural break at Kirgella Gift, which aligns with regional magnetic data, is also well illustrated by this new perspective. These clearly defined features can now be modelled with certainty and clarity, supporting definition of further exploration targets as well as 3D triangulations to construct a first JORC Code (2012) Mineral Resource Estimate (MRE) at Pinjin.

Figure 3 – Plan view image of RC and Diamond drill hole traces at Kirgella Gift and Providence showing broad zones of anomalous gold (pink, as defined at 0.1 g/t Au cut-off) over aeromagnetic data. Selected quoted intercepts utilise the 0.1 g/t Au cutoff (see Appendix 2) and contain higher grade, shorter intervals quoted in Tables 1, 2 and 3, and in Appendix 2. Bold black traces represent RC drilling completed by KalGold Dashed polygons depict projected anomalous gold zones to surface, within which sit individual modelled gold mineralisation intercepts. Projection: MGA 94 Zone 51.

Development of a coherent 3D geological model of gold mineralisation at Kirgella Gift and Providence utilises data from both KalGold's 2023 drill programs as well as the completely redigitised and verified historic dataset. This will help minimise resource definition costs, in a similar way to KalGold's initial JORC Code (2012) MRE at La Mascotte (ASX release, 7 March 2023), and aligning with the Company's strategy of defining shallow, low-cost resources in the Eastern Goldfields.

Kirgella Gift intercepts and enveloping anomalous zones

KalGold's full reassessment of the Kirgella Gift prospect notes three main anomalous zones containing published intercepts. The Company's initial assessment of the main intercepts using 0.5 g/t and 2.0 g/t cutoffs (see Appendix 2) was found to be appropriate, and additional application of the Rebecca-style low-grade anomalism using a 0.1 g/t cutoff defines these zones. Footwall and hangingwall zones are typically thinner and less continuous, but can be easily detected and monitored to track whether gold mineralisation shows potential to bell out laterally along strike or down-dip.

Examples of some of the newly calculated gold anomalous zones from KalGold's drilling are presented in Table 1 below. Similarly, selected anomalous zones from historic drilling are reported in

. All calculated anomalous zones are presented in Appendix 2.

Table 1 – Previously published intercepts (black text) from KalGold's drilling at Kirgella Gift within the newly calculated gold anomaly intercepts (red text, defined using a 0.1 g/t cutoff to align with similarly reported anomalous zones at Rebecca). See Appendix 2 for a full listing of all intercepts from Kirgella Gift and Providence.

Drill hole	KalGold Kirgella Gift intercept	Host anomalous zone
KGRC23001	12 m at 1.71 g/t Au from 11 m <i>including</i> 4 m at 2.91 g/t Au from 16 m 7 m at 1.50 g/t Au from 26 m <i>Including</i> 2 m at 3.30 g/t Au from 26 m	35m at 1.15g/t Au from 11m
KGRC23002	35 m at 1.71 g/t Au from 43 m including 12 m at 2.11 g/t Au from 44 m and 3 m at 3.15 g/t Au from 67 m and 1 m at 2.71 g/t Au from 76 m	37m at 1.62g/t Au from 43m
KGRC23003	38 m at 1.86 g/t Au from 73 m including 6 m at 2.85 g/t Au from 77 m and 11 m at 2.66 g/t Au from 86 m and 1 m at 4.20 g/t Au from 105 m and 1 m at 3.35 g/t Au from 109 m	43m at 1.67g/t Au from 73m
KGRC23007	11 m at 1.56 g/t Au from 24 m including 7 m at 2.03 g/t Au from 24 m	24m at 0.8g/t Au from 15m
KGRC23011	10 m at 1.16 g/t Au from 85 m <i>including</i> 1 m at 2.90 g/t Au from 88 m	15m at 0.88g/t Au from 85m
	4 m at 1.74 g/t Au from 145 m <i>including</i> 3 m at 2.11 g/t Au from 145 m 15 m at 0.98 g/t Au from 166 m <i>including</i> 4 m at 2.14 g/t Au from 173 m 4 m at 1.11 g/t Au from 184 m <i>including</i> 1 m at 2.33 g/t Au from 184 m	46m at 0.74g/t Au from 145m
KGRC23014	2 m at 2.78 g/t Au from 143 m including 1 m at 4.72 g/t Au from 143 m	15m at 0.84g/t Au from 131m
	5 m at 1.20 g/t Au from 177 m	14m at 0.66g/t Au from 175m
	4 m at 0.95 g/t Au from 209 m	17m at 0.39g/t Au from 202m

Figure 4 – An example cross section from Kirgella Gift (6,659,580mN) looking north, illustrating the relationship between the newly calculated anomalous gold zones and the higher-grade intercepts. In some cases showing KalGold and historic drillholes (see Appendix 2 and ASX announcement 23 May 2023). The newly calculated anomalous gold intercepts are shown in red with brackets, with drill hole traces and previously reported grades. Gold mineralised intercepts defined at 0.5 g/t Au cut-off are shown in bold red, hosted within coherent zones of gold anomalism defined at 0.1 g/t Au cut-off, shown in pink. Such anomalous zones are now rigorously defined using calculations on assay results that follow the methodology of Apollo Consolidated at Rebecca. This contrasts to previously published sections where, though similar, such zones were interpreted from data and observations rather than calculated. Projection: MGA 94 Zone 51. See Figure 3 for gold grade-metre legend. Table 2 – Previously published intercepts (black text) from historic drilling at Kirgella Gift within the newly calculated gold anomaly intercepts (red text, defined using a 0.1 g/t cutoff to align with similarly reported anomalous zones at Rebecca). See Appendix 2 for a full listing of all intercepts from Kirgella Gift and Providence.

Drill hole	Historic Kirgella Gift intercept	Host anomalous zone
KGRC004	33m at 3.1g/t Au from 51mincluding12m at 4.66g/t Au from 52mand2m at 7.01g/t Au from 73mand1m at 14.25g/t Au from 80m	45m at 2.36g/t Au from 51m
KGRC008	13m at 2.78g/t Au from 73mincluding6m at 4.29g/t Au from 73mand1m at 3.03g/t Au from 83m	13m at 2.78g/t Au from 73m
KGRC016	8m at 2.04g/t Au from 126m including 4m at 2.73g/t Au from 126m	17m at 1.11g/t Au from 118m
KSRC013	10m at 1.93g/t Au from 12m <i>including</i> 4m at 3.29g/t Au from 16m 9m at 2.07g/t Au from 26m <i>including</i> 5m at 2.93g/t Au from 28m	32m at 1.29g/t Au from 3m
PINC29	4m at 3.84g/t Au from 104m	28m at 0.96g/t Au from 80m
	4m at 1.16g/t Au from 140m 4m at 1.47g/t Au from 152m	52m at 0.46g/t Au from 124m
PINC5	8m at 2.03g/t Au from 109m including 3m at 3.73g/t Au from 109m	13m at 1.32g/t Au from 107m
	6m at 1.90g/t Au from 217m including 1m at 7.27g/t Au from 217m	10m at 1.2g/t Au from 214m

Providence intercepts and enveloping anomalous zones

Gold anomalies are also calculated for Providence and, in keeping with the geological similarities between the two prospects, similar thick anomalous zones are defined surrounding higher grades of gold mineralisation. They show good continuity both within section and along strike.

Table 3 – Previously published intercepts (black text) at Providence within the newly calculated gold anomaly intercepts (red text, defined using a 0.1 g/t cutoff). See Appendix 2 for a full listing of all intercepts from Kirgella Gift and Providence.

Drill hole	Providence intercept (KalGold + historic)	Host anomalous zone
KGRC23008	11 m at 2.51 g/t Au from 32 m <i>including</i> 4 m at 5.63 g/t Au from 39 m	14m at 2.0g/t Au from 32m
KGRC23009	9 m at 1.23 g/t Au from 49 m including 1 m at 2.17 g/t Au from 56 m	45m at 0.52g/t Au from 49m
	14 m at 1.32 g/t Au from 125 m including 2 m at 4.45 g/t Au from 132 m 1 m at 2.16 g/t Au from 146 m	26m at 0.91g/t Au from 124m
KGRC23015	6 m at 2.11 g/t Au from 80 m including 3 m at 3.16 g/t Au from 83 m 4 m at 1.37 g/t Au from 91 m including 1 m at 4.80 g/t Au from 94 m 2 m at 2.58 g/t Au from 101 m including 1 m at 4.09 g/t Au from 102 m	23m at 1.08g/t Au from 80m

Figure 5 – An example cross section from Providence (6,659,200mN) looking north, illustrating the relationship between the newly calculated anomalous zones to the better mineralised zones. In some cases showing KalGold and historic drillholes (see Appendix 2 and ASX announcement 23 May 2023). The newly calculated anomalous gold intercepts are shown in red with brackets, with drill hole traces and previously reported grades. Gold mineralised intercepts defined at 0.5 g/t Au cut-off are shown in bold red, hosted within coherent zones of gold anomalism defined at 0.1 g/t Au cut-off, shown in pink. Such anomalous zones are now rigorously defined using calculations on assay results that follow the methodology of Apollo Consolidated at Rebecca. This contrasts to previously published sections where, though similar, such zones were interpreted from data and observations rather than calculated. Projection: MGA 94 Zone 51. See Figure 3 for gold grade-metre legend.

Thick, shallow zones encourage open pit mining.

At Kirgella Gift and Providence, this new approach could have a material impact on the Company's strategy of defining shallow, potentially open-pittable resources at Pinjin. This is particularly well-illustrated by several shallow intercepts at Kirgella Gift:

- The Company's very first drill hole at Kirgella Gift (KRGR23001) shows a 12m and a 7m intercept at 11m and 28m depth respectively. These are now revealed to coalesce into a broad, **35m thick** intercept grading over 1.1 g/t Au from only 11 m depth.
- Historic drill hole KSRC013 shows a 10m thick intercept from 12m depth with an underlying 9m thick intercept. These coalesce into a **32 m thick interval of 1.3 g/t Au from only 3m depth**.

Broad, shallow intercepts of such grades likely represent free digging, low-cost mining of oxide material that can significantly enhance the economics of a project, which will be defined in future mining studies.

drill holes may laterally pass out of the mineralised zones with depth. Projection: MGA 94 Zone 51

Page 9

Preparation underway for a shallow JORC 2012 Mineral Resource Estimate

Geological interpretation and modelling is underway at Kirgella Gift and Providence to support the Company's first JORC Code (2012) MRE at Pinjin. The resource will prioritise shallow ounces to advance towards open pit mining.

Targeting throughout the Pinjin tenement package

With the recent granting of additional tenure at Pinjin, KalGold has, in parallel to the Kirgella Gift and Providence reassessment, undertaken a comprehensive targeting program over the area. Kirgella Gift and Providence constitute less than 5% of the strike extent of the Laverton Tectonic Zone contained within the Company's tenure, and the Anglo Saxon gold mine is located along strike to the north and the 1.4 Moz Rebecca Gold Project along strike to the south.

This phase of the targeting exercise will be completed shortly. They Company will announce the results of the study, providing a synopsis of the ranked targets that will provide shareholders an overarching exploration plan to realise the gold potential of the Pinjin Gold Project. The Company looks forward to updating shareholders soon.

Authorised for lodgement by the Board of Kalgoorlie Gold Mining Limited.

For further information regarding KalGold, please visit <u>www.kalgoldmining.com.au</u> or contact:

Matt Painter

Managing Director and Chief Executive Officer Tel +61 8 6002 2700

About KalGold

ASX-listed resources company Kalgoorlie Gold Mining (KalGold, ASX: KAL) is a proven, low-cost gold discoverer with a large portfolio of West Australian projects, focussed on:

- The Bulong Taurus Project, 35km east of Kalgoorlie-Boulder, contains the outcropping La Mascotte gold deposit as well as a series of satellite prospects and historic workings of the Taurus Goldfield. Importantly, KalGold's methods resulted in the definition of a JORC resource estimate (3.61 Mt @ 1.19 g/t Au for 138,000 oz¹) that is one of the most inexpensive in recent times (A\$4.60 per ounce of gold). Exploration work continues at the project.
- The Pinjin Project within the 30Moz Laverton Tectonic Zone (host to Sunrise Dam, Granny Smith, Rebecca, Anglo Saxon, and Wallaby projects) is located only 25km north along strike from Ramelius Resources (ASX: RMS) Rebecca Gold Project. With historic work identifying open gold mineralisation from shallow levels, immediate work is focused on testing mineralisation continuity. At Kirgella and Pinjin South, tenure is the subject of a farm-in over the next two years to expand upon known mineralisation. Between this tenure and KalGold's existing tenure and applications, the Company has established a significant presence in a strategic and important region.

AUSTRALIA

 Other projects are the focus of early-stage exploration programs. Gold anomalism and recent discoveries are driving efforts at **Perrinvale** and **Zelica**. Additionally, lithium potential is being tested at the **Pianto** and **Pinjin** projects.

Follow KalGold on social media.

¹ See KalGold ASX release, "La Mascotte gold deposit: First JORC (2012) Mineral Resource of 138,000 oz Au". 7 March 2023.

CAUTIONARY NOTE REGARDING FORWARD-LOOKING INFORMATION

This news release contains forward-looking statements and forward-looking information within the meaning of applicable Australian securities laws, which are based on expectations, estimates and projections as of the date of this news release.

This forward-looking information includes, or may be based upon, without limitation, estimates, forecasts and statements as to management's expectations with respect to, among other things, the timing and amount of funding required to execute the Company's exploration, development and business plans, capital and exploration expenditures, the effect on the Company of any changes to existing legislation or policy, government regulation of mining operations, the length of time required to obtain permits, certifications and approvals, the success of exploration, development and mining activities, the geology of the Company's properties, environmental risks, the availability and mobility of labour, the focus of the Company in the future, demand and market outlook for precious metals and the prices thereof, progress in development of mineral properties, the Company's ability to raise funding privately or on a public market in the future, the Company's future growth, results of operations, restrictions caused by COVID-19, performance, and business prospects and opportunities. Wherever possible, words such as "anticipate", "believe", "expect", "intend", "may" and similar expressions have been used to identify such forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the information is given, and on information available to management at such time.

Forward-looking information involves significant risks, uncertainties, assumptions, and other factors that could cause actual results, performance, or achievements to differ materially from the results discussed or implied in the forward-looking information. These factors, including, but not limited to, fluctuations in currency markets, fluctuations in commodity prices, the ability of the Company to access sufficient capital on favourable terms or at all, changes in national and local government legislation, taxation, controls, regulations, political or economic developments in Australia or other countries in which the Company does business or may carry on business in the future, operational or technical difficulties in connection with exploration or development activities, employee relations, the speculative nature of mineral exploration and development, obtaining necessary licenses and permits, diminishing quantities and grades of mineral reserves, contests over title to properties, the uncertainties involved in interpreting drill results and other geological data, environmental hazards, industrial accidents, unusual or unexpected formations, pressures, cave-ins and flooding, limitations of insurance coverage and the possibility of project cost overruns or unanticipated costs and expenses, and should be considered carefully. Many of these uncertainties and contingencies can affect the Company's actual results and could cause actual results to differ materially from those expressed or implied in any forward-looking statements made by, or on behalf of, the Company. Prospective investors should not place undue reliance on any forward-looking information.

Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, the Company cannot assure prospective purchasers that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither the Company nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. The Company does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

No stock exchange, regulation services provider, securities commission or other regulatory authority has approved or disapproved the information contained in this news release.

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Matthew Painter, a Competent Person who is a Member of the Australian Institute of Geoscientists. Dr Painter is the Managing Director and Chief Executive Officer of Kalgoorlie Gold Mining Limited (KalGold) and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Painter consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Dr Painter holds securities in Kalgoorlie Gold Mining Limited.

EXPLORATION RESULTS

The references in this announcement to Exploration Results were reported in accordance with Listing Rule 5.7 in the announcements titled:

- Shallow, high-grade results extend Kirgella Gift and Providence corridor to over 1,150 m of strike, 25 October 2023
- Thick, shear-hosted gold mineralisation intercepted at Kirgella Gift, 8 June 2023
- KalGold farms-in to Kirgella gold tenement and acquires Rebecca West tenure at Pinjin, 24 May 2023

The Company confirms that it is not aware of any new information or data that materially affects the information included in the previous market announcements noted above.

APPENDIX 1 – Collar location data

KalGold drill hole collar location data

Collar location data for all RC drill holes (and diamond hole) for which anomalous zones have been calculated at Kirgella Gift and Providence. All drill holes are located on tenement E28/2655.

Durant	D. H. L.	0	T	e Grid	Easting	Northing	RL	Depth	Dip	Azimuth	Data Source
Prospect	Dhii hole	Operator	туре		(mE)	(mN)	(mASL)	(m)	(°)	(°)	(DEMIRS Rpt)
Kirgella Gift	KGRC23001	KalGold	RC	MGA94_51	475,789	6,659,758	365.9	100	-60.7	91.2	N/A
Unt	KGRC23002	KalGold	RC	MGA94_51	475,771	6,659,738	366.2	185	-60.4	90.1	N/A
	KGRC23003	KalGold	RC	MGA94_51	475,754	6,659,720	365.2	140	-60.4	90.7	N/A
	KGRC23004	KalGold	RC	MGA94_51	475,743	6,659,898	365.8	140	-63.0	90.9	N/A
	KGRC23005	KalGold	RC	MGA94_51	475,745	6,659,808	365.7	160	-63.4	86.6	N/A
	KGRC23006	KalGold	RC	MGA94_51	475,841	6,659,631	365.7	110	-61.4	92.2	N/A
	KGRC23007	KalGold	RC	MGA94_51	475,849	6,659,580	364.9	90	-61.2	92.9	N/A
	KGRC23010	KalGold	RC	MGA94_51	475,803	6,659,529	363.6	150	-62.6	90.6	N/A
	KGRC23011	KalGold	RC	MGA94_51	475,771	6,659,580	363.6	220	-62.8	84.6	N/A
	KGRC23012	KalGold	RC	MGA94_51	475,743	6,659,766	365.9	230	-63.4	90.3	N/A
	KGRC23013	KalGold	RC	MGA94_51	475,776	6,659,623	363.5	225	-60.7	81.6	N/A
	KGRC23014	KalGold	RC	MGA94_51	475,735	6,659,622	362.5	299	-60.5	85.5	N/A
	KGRC001	Renaissance	RC	MGA94_51	475,789	6,659,812	366.2	100	-60.3	93.9	A93735
	KGRC002	Renaissance	RC	MGA94_51	475,790	6,659,781	365.9	100	-61.5	93.0	A93735
	KGRC003	Renaissance	RC	MGA94_51	475,815	6,659,723	365.9	70	-61.4	89.1	A93735
	KGRC004	Renaissance	RC	MGA94_51	475,771	6,659,718	365.2	170	-60.8	93.3	A93735
	KGRC005	Renaissance	RC	MGA94_51	475,860	6,659,683	366.6	140	-60.4	96.5	A93735
	KGRC006	Renaissance	RC	MGA94_51	475,820	6,659,683	365.8	190	-60.9	89.7	A93735
	KGRC007	Renaissance	RC	MGA94_51	475,711	6,659,722	363.3	174	-60	90	A93735
	KGRC008	Renaissance	RC	MGA94_51	475,763	6,659,693	364.5	174	-60.8	91.3	A93735
	KGRC009	Renaissance	RC	MGA94_51	475,778	6,659,658	364.3	174	-60.6	88.7	A93735
	KGRC010	Renaissance	RC	MGA94_51	475,726	6,659,674	362.8	174	-60.7	90.8	A93735
	KGRC011	Renaissance	RC	MGA94_51	475,819	6,659,623	365.0	174	-59.9	92.7	A93735
	KGRC012	Renaissance	RC	MGA94_51	475,739	6,659,727	364.4	174	-60.0	89.3	A93735
	KGRC013	Renaissance	RC	MGA94_51	475,784	6,659,794	366.0	174	-58.8	87.0	A93735
	KGRC014	Renaissance	RC	MGA94_51	475,810	6,659,580	364.2	174	-59.1	88.1	A93735
	KGRC015	Renaissance	RC	MGA94_51	475,706	6,659,607	362.3	204	-59.8	47.4	A93735
	KGRC016	Renaissance	RC	MGA94_51	475,749	6,659,607	363.3	252	-59.7	50.7	A93735
	KGRC017	Renaissance	RC	MGA94_51	475,846	6,659,531	364.9	140	-60	90	A93735
	KGRC018	Renaissance	RC	MGA94_51	475,846	6,659,479	364.5	148	-60	90	A93735
	KGRC019	Renaissance	RC	MGA94_51	475,758	6,659,504	362.8	210	-60	90	A93735
	KSRC001	Burdekin	RC	MGA94_51	475,767	6,659,758	365.3	100	-60	89	A58706
	KSRC002	Burdekin	RC	MGA94_51	475,852	6,659,758	366.5	100	-60	272	A58706
	KSRC003	Burdekin	RC	MGA94_51	475,782	6,659,758	365.6	75	-60	87	A58706
	KSRC004	Burdekin	RC	MGA94_51	475,822	6,659,758	366.0	80	-60	90	A58706
	KSRC005	Burdekin	RC	MGA94_51	475,817	6,659,658	365.5	60	-60	88	A58706
	KSRC006	Burdekin	RC	MGA94_51	475,802	6,659,658	365.0	80	-61	95	A58706
	KSRC007	Burdekin	RC	MGA94_51	475,832	6,659,608	365.1	70	-60	90	A58706
	KSRC008	Burdekin	RC	MGA94_51	475,792	6,659,708	365.4	60	-60	90	A58706
	KSRC009	Burdekin	RC	MGA94_51	4/5,/8/	6,659,731	365.6	80	-60	93	A58706
	KSRC010	Burdekin	RC	MGA94_51	4/5,/6/	6,659,781	365.6	60	-60	90	A58706
	KSRC011	Burdekin	RC	MGA94_51	475,702	6,659,858	363.9	60	-60	90	A58706
	KSRC012	Burdekin	RC	MGA94_51	475,802	0,059,808	366.2	60	-60	90	A58706
	KSRC013	Burdekin	RC	MGA94_51	475,797	6,659,758	365.7	60 045 5	-60	88	A58706
	NEWPJDD0005	Newmont	DD	MGA94_51	4/5,698	0,059,/15	362.8	315.5	-55	90	A01567
	PINC28	Gutnick	RC	WGA94_51	4/5,/48	0,059,/44	364.8	238	-60	52	A03110
	PING29	Guinick			4/0,/91	0,009,040	363.0	202	-00	52	A03110
		Gutnick		WGA94_31	410,091	0,009,700	363 ⊑	300	-0U	90	A03110
	FINGO	Gutflick	КU	WGA94_91	410,102	0,009,000	303.3	300	-00	90	AUSTIU
Duri 1	KODOCCCC	14-10-11	D 2	MOAG4 54	475 000	0.050.400	201.0	00	00.4	04.0	N1/A
Providence	KGKU23008	KalG0l0	RC	MGA94_51	410,033	0,009,199	301.9	90	-00.4	91.0	N/A

Ducaucat	t Deill hala Onematan	T	0	Easting	Northing	RL	Depth	Dip	Azimuth	Data Source	
Prospect	Drill noie	Operator	туре	Gria	(mE)	(mN)	(mASL)	(m)	(°)	(°)	(DEMIRS Rpt)
	KGRC23009	KalGold	RC	MGA94_51	475,787	6,659,197	360.4	160	-63.5	91.6	N/A
	KGRC23015	KalGold	RC	MGA94_51	475,810	6,659,250	363.6	126	-60.6	90.6	N/A
	KGRC23016	KalGold	RC	MGA94_51	475,770	6,659,246	362.0	185	-60.3	88.8	N/A
	KGRC23017	KalGold	RC	MGA94_51	475,810	6,659,155	358.1	125	-60.4	93.0	N/A
	KGRC23018	KalGold	RC	MGA94_51	475,770	6,659,155	357.5	185	-60.8	92.7	N/A
	KGRC23019	KalGold	RC	MGA94_51	475,804	6,659,098	358.3	115	-57.7	88.9	N/A
	KGRC23020	KalGold	RC	MGA94_51	475,770	6,659,105	356.2	180	-60.7	88.9	N/A
	KGRC23021	KalGold	RC	MGA94_51	475,797	6,659,051	356.4	141	-60.3	84.5	N/A
	KGRC23022	KalGold	RC	MGA94_51	475,790	6,659,300	362.4	160	-60.4	90.6	N/A
	KGRC020	Renaissance	RC	MGA94_51	475,813	6,659,199	360.8	140	-61.6	90	A105183
	KGRC021	Renaissance	RC	MGA94_51	475,759	6,659,199	359.5	150	-61.3	90	A105183

APPENDIX 2 – Newly calculated intercepts, Pinjin Project

Parameters used to define gold intercepts at Pinjin

Parameter	Gold mineralisation		Gold anomalism
Minimum cut-off	0.5g/t	2.0g/t	0.1g/t
Minimum intercept thickness	1m*	1m*	1m
Maximum internal waste thickness	2m*	2m*	2m

KalGold uses automated intercept calculation to ensure unbiased and impartial definition of gold mineralisation distributions. Gold intercepts at Pinjin are calculated using an algorithm that uses a 0.5g/t Au cut-off on a minimum intercept of 1m and a maximum internal waste of 2m. Secondary intercepts (i.e., the "including" intercepts) are defined using a 2.0g/t cut-off and the same intercept and internal waste characteristics.

Similarly, gold anomalism at Kirgella Gift, Providence, and throughout the Pinjin Project will be defined using the criteria utilised historically throughout the area. This algorithm that uses a 0.1g/t Au cut-off on a minimum intercept of 1m and a maximum internal waste of 2m. The algorithm enables calculation rather than interpretation of the anomalous zones for more rigorous tracing of individual lodes into and out of more intense gold mineralisation.

All gold anomalies and intercepts from Kirgella Gift prospect

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
KGRC23001	5m at 0.13g/t Au from 2m		· - ·		
	35m at 1.15g/t Au from 11m	including	12m at 1.71g/t Au from 11m	including	4m at 2.91g/t Au from 16m
		and	7m at 1.5g/t Au from 26m	including	2m at 3.3g/t Au from 26m
		and	8m at 0.85g/t Au from 37m	including	1m at 2.18g/t Au from 41m
	22m at 0.32g/t Au from 57m		1m at 0.55g/t Au from 59m		
			2m at 0.53g/t Au from 63m		
			4m at 0.68g/t Au from 73m		
	1m at 0.1g/t Au from 87m				
	1m at 0.59g/t Au from 92m	including	1m at 0.59g/t Au from 92m		
KGRC23002	1m at 0.21g/t Au from 33m				
	37m at 1.62g/t Au from 43m	including	35m at 1.71g/t Au from 43m	including	12m at 2.11g/t Au from 44m
				and	3m at 3.15g/t Au from 67m
				and	1m at 2.71g/t Au from 76m
	2m at 0.31g/t Au from 86m				
	7m at 0.92g/t Au from 92m	including	3m at 2.02g/t Au from 93m	including	1m at 5.13g/t Au from 93m
	11m at 0.58g/t Au from 105m	including	8m at 0.77g/t Au from 106m	including	1m at 2.14g/t Au from 112m
	5m at 0.37g/t Au from 138m	including	1m at 0.77g/t Au from 139m		
	3m at 0.72g/t Au from 155m	including	2m at 1g/t Au from 155m		
	1m at 0.12g/t Au from 161m				
	1m at 0.11g/t Au from 170m				
KGRC23003	5m at 0.38g/t Au from 26m	including	2m at 0.67g/t Au from 27m		
	43m at 1.67g/t Au from 73m	including	38m at 1.86g/t Au from 73m	including	6m at 2.85g/t Au from 77m
				and	11m at 2.66g/t Au from 86m
				and	1m at 4.2g/t Au from 105m
				and	1m at 3.35g/t Au from 109m
	6m at 0.33g/t Au from 129m	including	1m at 1.44g/t Au from 134m		
KGRC23004	2m at 0.69g/t Au from 37m	including	2m at 0.69g/t Au from 37m		
	3m at 0.18g/t Au from 50m				
	3m at 0.45g/t Au from 71m	including	1m at 1.04g/t Au from 73m		
	6m at 1.15g/t Au from 93m	including	4m at 1.5g/t Au from 93m	including	1m at 2.39g/t Au from 93m

Page 15

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
	3m at 0.12g/t Au from 103m		((
KGRC23005	1m at 0.17g/t Au from 119m				
	1m at 0.21g/t Au from 124m				
KGRC23006	16m at 0.64g/t Au from 16m	including	11m at 0.86g/t Au from 21m	including	1m at 2.03g/t Au from 22m
	22m at 0.49g/t Au from 46m	including	8m at 0.81g/t Au from 49m		
		and	1m at 0.57g/t Au from 60m		
		and	1m at 0.57g/t Au from 64m		
KGRC23007	24m at 0.8g/t Au from 15m	including	1m at 0.56g/t Au from 18m		
		and	11m at 1.56g/t Au from 24m	including	7m at 2.03g/t Au from 24m
	9m at 0.87g/t Au from 43m	including	6m at 1.18g/t Au from 45m		
	7m at 0.11g/t Au from 56m				
	1m at 0.15g/t Au from 69m				
KGRC23010	10m at 0.91g/t Au from 38m	including	4m at 1.94g/t Au from 43m	including	3m at 2.26g/t Au from 44m
	17m at 0.29g/t Au from 105m	including	1m at 1.62g/t Au from 110m		
	2m at 0.13g/t Au from 128m				
KGRC23011	4m at 0.1g/t Au from 0m	including		includies	
	15m at 0.88g/t Au from 85m	including	10m at 1.16g/t Au from 85m	including	1m at 2.9g/t Au from 88m
	40m at 0.74 - 11 A - 5 - 445	allu	1m at 0.58g/t Au from 99m	including	0m at 0.44 - 11 Au Con
	46m at 0.74g/t Au from 145m	and	4m at 1.74g/t Au from 145m	incluulity	3m at 2.11g/t Au from 145m
		and	2m at 0.92g/t AU from 155m		
		and	1 m at 1.3g/t Au from 160m	includina	Am at 0 14 a/t Au from 172m
		and	15111 at 0.90g/LAU 110111 100111	including	4111 at 2.14g/t Au 110111 17311
	1m at 1 20a/t Au from 20/m	includina	4111 at 1.119/t Au 110111 104111 1m at 1.20a/t Au from 20/m	molading	1111 at 2.359/1 Au 110111 104111
	2m at () 23a/t Au from 210m		mat 1.209/1 Au 110111 204111		
KGRC23012	2m at 0.24g/t Au from 60m				
NON023012	3m at 0.35g/t Au from 90m	including	1m at 0 52g/t Au from 90m		
	5m at 0.83g/t Au from 164m	including	4m at 0.98g/t Au from 164m		
	1m at 0.22g/t Au from 184m				
	10m at 0.92g/t Au from 191m	including	9m at 0.97g/t Au from 191m	including	1m at 2.02g/t Au from 197m
	3m at 0.45g/t Au from 226m	including	1m at 0.79g/t Au from 226m		J
KGRC23013	1m at 0.18g/t Au from 87m		5		
	18m at 0.96g/t Au from 124m	including	17m at 1.01g/t Au from 124m	including	1m at 2.76g/t Au from 135m
	13m at 0.36g/t Au from 171m	including	1m at 0.68g/t Au from 172m		-
	17m at 0.44g/t Au from 187m	including	5m at 0.57g/t Au from 177m		
		and	1m at 0.96g/t Au from 187m		
		and	5m at 0.73g/t Au from 192m		
		and	1m at 1.24g/t Au from 202m		
KGRC23014	2m at 0.12g/t Au from 80m				
	15m at 0.84g/t Au from 131m	including	8m at 0.68g/t Au from 132m		
		and	2m at 2.78g/t Au from 143m	including	1m at 4.72g/t Au from 143m
	14m at 0.66g/t Au from 175m	including	5m at 1.2g/t Au from 177m		
		and	3m at 0.67g/t Au from 185m		
	17m at 0.39g/t Au from 202m	including	1m at 1.11g/t Au from 202m		
		and	4m at 0.95g/t Au from 209m		
KGRC001	1m at 0.2g/t Au from 25m				
	3m at 0.13g/t Au from 56m				
KODOGG	1m at 0.41g/t Au from 63m	look alian			
KGRC002	31m at 0.37g/t Au from 5m	including	1m at 0.6g/t Au from 12m		
		allu	orn at 0.77g/t Au from 16m		
		and	3m at 1.16g/t Au from 27m		
	9m at 0.00-/4 A. from 00-	anu	1m at 0.55g/t Au from 34m		
	orn at 0.28g/t Au from 68m	and	1m at 0.53g/t Au from / 1m		
		anu	im at 0.52g/t Au from 73m		

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
	3m at 0.87g/t Au from 80m	including	1m at 1.93g/t Au from 81m		
KGRC003	10m at 0.35g/t Au from 22m	including	1m at 0.99g/t Au from 23m		
		and	1m at 0.8g/t Au from 28m		
	1m at 0.43g/t Au from 37m				
	4m at 0.12g/t Au from 64m				
KGRC004	2m at 0.5g/t Au from 30m	including	1m at 0.69g/t Au from 31m		
	1m at 0.12g/t Au from 38m				
	45m at 2.36g/t Au from 51m	including	33m at 3.1g/t Au from 51m	including	12m at 4.66g/t Au from 52m
				and	2m at 7.01g/t Au from 73m
				and	1m at 14.25g/t Au from 80m
		and	1m at 1.14g/t Au from 94m		
	6m at 0.3g/t Au from 114m	including	1m at 0.68g/t Au from 117m		
	1m at 0.83g/t Au from 124m	including	1m at 0.83g/t Au from 124m		
	18m at 0.39g/t Au from 128m	including	1m at 1.17g/t Au from 135m		
		and	2m at 1.63g/t Au from 140m	including	1m at 2.2g/t Au from 140m
	8m at 0.37g/t Au from 160m	including	4m at 0.58g/t Au from 164m		
KGRC005	12m at 0.64g/t Au from 15m	including	5m at 1.33g/t Au from 20m	including	1m at 3.43g/t Au from 21m
	1m at 0.22g/t Au from 31m				
KGRC006	18m at 0.68g/t Au from 22m	including	2m at 1.32g/t Au from 25m		
		and	1m at 1.03g/t Au from 30m		
		and	5m at 1.15g/t Au from 34m	including	1m at 2.27g/t Au from 37m
	21m at 0.39g/t Au from 101m	including	3m at 0.61g/t Au from 102m		
		and	8m at 0.59g/t Au from 114m		
KGRC007	1m at 0.51g/t Au from 49m	including	1m at 0.51g/t Au from 49m		
	1m at 0.1g/t Au from 98m				
	1m at 0.16g/t Au from 111m				
	1m at 0.1g/t Au from 114m				
	2m at 0.29g/t Au from 132m	in a localita a			
	2m at 0.65g/t Au from 137m	including	1m at 0.96g/t Au from 138m		
	5m at 0.15g/t Au from 143m	in a localita a			
	4m at 0.18g/t Au from 168m	including	1m at 0.52g/t Au from 171m		
KGRC008	1m at 0.12g/t Au from 23m				
	7m at 0.19g/t Au from 29m	in aludin a		including	
	13m at 2.78g/t Au from 73m	incluaing	13m at 2.78g/t Au from 73m	including	6m at 4.29g/t Au from 73m
		including	0 1011 10 0	anu	1m at 3.03g/t Au from 83m
	29m at 0.5g/t Au from 94m	and	2m at 2.14g/t Au from 97m	including	1m at 2.96g/t Au from 97m
		and	2m at 1.43g/t Au from 103m	including	
		and	1m at 2.62g/t Au from 115m	incluuling	1m at 2.62g/t Au from 115m
	40	including	1m at 0.57g/t Au from 119m		
	16m at 0.43g/t Au from 140m	and	3m at 0.87g/t Au from 140m		
	1 m at 0 22 a/t Au from 162m	includina	2m at 1.0/g/t Au from 148m		
	4111 at 0.339/t Au 110111 162111	including	1m at 1.0 1g/t Au 110m 165m		
	5111 at 0.25g/t Au 110111 109111	including	1m at 0.59/t Au 110m 17 m		
KGRC009	Sin at 0.54g/t Au nom Som	including	10m at 0.89g/t Au 110111 54111	includina	1m at 2 01a/t Au from 102m
	zom at 0.029/t Au from 90m	and	12 m at 0.00 y/LAU mom 94 m 3m at 1.27 a/t Au from 110 m	inolaaling	nn al 2.9 ig/l Au nom 103m
	2m at 0.46a/t Au from 133m	includina	1m at 0.81a/t Au 110111 1 10111		
	6m at 0.3α/t Διι from 130m		mato.org/t/autolit 10411		
	9m at $0.4/a/t$ Au from 150m	includina	3m at 0.98a/t Au from 153m		
	2m at 0.444y/t Au 110111 120111	includina	1m at 0.309/LAU 110111 133111		
	1m at 0.12a/t Au from 0.2m		m at 1.009/LAU 110111 102111		
	3m at 0.12g/t Au 110111 92111				
	Sin at 0.12y/t Au 110111 101111 6m at 0.51a/t Au from 104m	including	1m at 2 12a/t Au from 120m	including	1m at 2 12a/t Au from 120m
	35m at 0.70a/t Au from 133m	includina	10m at 2.72y/t Au 110111 12011	includina	2m at 2.72y/(Au 10111 12011)
	John at 0.7 Jyrt Au 110111 13311		1011 at 1.0 19/1 Au 110111 13411		211 at 5.0 19/1 Au 110111 140111

Drillhole	Gold Anomalism		Gold intercept		Gold intercept
		and	(0.5 g/t CulOII)		(2.0 g/t cutoll)
	2m at 0 EZa/t Au from 1Em	including	1 at 0.65 g/t Au from 159m		
KGRCUTT	2m at 0.57g/t Au from 45m	including	1 m at 0.65g/t Au from 45m	including	1m at 0.07a/t Au from 61m
	12m at 1.33g/t Au from 51m	including	TIM at 1.44g/t Au from 52m	moluding	Im at 2.37 g/t Au from 6 Im
	8m at 0.83g/t Au from 67m	including	6m at 1.03g/t Au from 68m		
	25m at 0.54g/t Au from 82m	incluulity	17m at 0.69g/t Au from 85m		
KGRC012	1m at 0.23g/t Au from 38m	to a local to a			
	24m at 0.79g/t Au from 96m	including	1m at 0.7g/t Au from 96m		
		and	17m at 0.97g/t Au from 101m	including	3m at 2.19g/t Au from 113m
	5m at 0.33g/t Au from 132m	including	1m at 0.86g/t Au from 132m		
	8m at 0.42g/t Au from 144m	including	1m at 1.97g/t Au from 148m		
	5m at 0.09g/t Au from 169m				
KGRC013	19m at 0.8g/t Au from 12m	including	15m at 0.97g/t Au from 13m		
	7m at 0.4g/t Au from 49m	including	2m at 1.19g/t Au from 49m		
	3m at 0.18g/t Au from 72m				
	1m at 0.27g/t Au from 127m				
KGRC014	28m at 0.83g/t Au from 79m	including	26m at 0.87g/t Au from 79m	including	1m at 3.23g/t Au from 84m
KGRC015	4m at 0.38g/t Au from 34m	including	1m at 0.55g/t Au from 35m		
	22m at 0.85g/t Au from 182m	including	- 1m at 1.04g/t Au from 186m		
	5	and	9m at 1.45ɑ/t Au from 190m	including	4m at 2.44q/t Au from 190m
		and	2m at 1.44g/t Au from 202m		···· •• =·· · · · · · · · · · · · · · ·
KGRC016	17m at 1 11g/t Au from 118m	including	2m at 0 77g/t Au from 121m		
		and	8m at 2 0/4g/t Au from 126m	includina	4m at 2 73α/t Διι from 126m
	1m at 0.36g/t Au from 161m		om at 2.049/t Au nom 120m	5	
	7m at 0.68a/t Au from 165m	includina	7m at 0.68a/t Au from 165m		
	10m at 0.46a/t Au from 102m	including	Fin at 0.00g/t Au from 106m		
	1011 at 0.409/t Au from 216m	including	1m at 0.02a/t Au from 217m		
1000017	411 at 0.399/t Au 11011 2 1611	including	1111 at 0.92g/t Au 11011 21711		
KGRC017	15m at 0.41g/t Au from 26m	and	1m at 0.72g/t Au from 26m		
		dIIU	2m at 1.75g/t Au from 36m		
	10m at 0.33g/t Au from 46m	including	1m at 1.45g/t Au from 4/m		
KGRC018	2m at 0.58g/t Au from 39m	including	1m at 0.86g/t Au from 40m		
KGRC019	1m at 0.39g/t Au from 84m				
	11m at 0.49g/t Au from 115m	including	1m at 1.81g/t Au from 119m		
		and	1m at 1.2g/t Au from 123m		
	1m at 0.87g/t Au from 147m	including	1m at 0.87g/t Au from 147m		
	1m at 0.13g/t Au from 171m				
KSRC001	3m at 0.14g/t Au from 16m				
	1m at 0.26g/t Au from 23m				
	1m at 0.1g/t Au from 28m				
	30m at 0.78g/t Au from 42m	including	2m at 1.04g/t Au from 43m		
		and	2m at 1.34g/t Au from 48m		
		and	3m at 1.52g/t Au from 53m	including	1m at 3.08g/t Au from 54m
		and	9m at 1.22g/t Au from 61m	including	1m at 2.86g/t Au from 65m
			-	and	1m at 2g/t Au from 67m
	10m at 0.29a/t Au from 84m	including	1m at 0.6g/t Au from 84m		
		and	1m at 0.85a/t Au from 93m		
	1m at 0.36g/t Au from 99m				
KSRC002	6m at 0.42α/t Δu from 15m	includina	1m at 1 8n/t Διι from 18m		
NONCOUL	5m at 0.3/ a/t Au from 25m	includina	1 m at 0.65 a/t Au from 28 m		
	Smat 0.86a/t Au from 22m	including	5m at 0.00g/t Au 110111 20111		
	$\sin a \cos y/t = 40$	including	1m at 0.90g/LAU 110M 33M		
	$\sin a \cup 2 \cos/t A u \text{ from } 42 \text{ m}$	including	1m at 0.54g/t Au from 43m		
	Sm at 0.48g/t Au from 50m	and	1m at 0.67g/t Au from 50m		
		anu	Tim at 0.76g/t Au from 52m		
	11m at 0.2g/t Au from 58m	including	1m at 0.97g/t Au from 66m		
	1m at 0.13g/t Au from 84m				

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
	1m at 0.18g/t Au from 91m				
	1m at 0.24g/t Au from 97m				
KSRC003	25m at 1.02g/t Au from 13m	including	8m at 1.07g/t Au from 16m	including	1m at 2.56g/t Au from 22m
		and	10m at 1.57g/t Au from 28m	including	1m at 6.19g/t Au from 29m
				and	1m at 2.88g/t Au from 34m
				and	1m at 2.08g/t Au from 36m
	12m at 0.69g/t Au from 41m	including	7m at 1.04g/t Au from 44m	including	1m at 2.4g/t Au from 44m
				and	1m at 2.8g/t Au from 48m
	1m at 0.25g/t Au from 58m				
	13m at 0.23g/t Au from 62m				
KSRC004	5m at 0.11g/t Au from 4m				
	1m at 0.15g/t Au from 15m	including	0		
	4m at 0.51g/t Au from 27m	including	2m at 0.78g/t Au from 27m		
	1m at 0.11g/t Au from 58m	includina	1m at 0 EZalt Au from 60m		
KERCOOF	24m at 1.12g/t Au from 26m	including	24m at 1 12a/t Au from 26m	includina	Am at 2 26a/t Au from EEm
KSRC006	6m at 0.18g/t Au from 0m	includina	1m at 0.53g/t Au from 1m	inolaanig	411 at 2.209/t Au 11011 3511
Kerkeebe	27m at 1 02g/t Au from 53m	including	5m at 1 43g/t Au from 54m	including	2m at 2 22g/t Au from 54m
	2 mat hought to home of h	and	16m at 1 19g/t Au from 62m	including	1m at 3 57g/t Au from 70m
				and	1m at 3.16g/t Au from 74m
KSRC007	17m at 0.81g/t Au from 21m	including	13m at 0.98g/t Au from 24m	including	2m at 2.69g/t Au from 34m
	9m at 0.94g/t Au from 52m	including	4m at 1.93g/t Au from 57m	including	1m at 2.3g/t Au from 57m
	0		0	and	1m at 2.12g/t Au from 60m
	3m at 0.68g/t Au from 65m	including	1m at 1.7g/t Au from 65m		Ū
KSRC008	7m at 0.2g/t Au from 51m	including	1m at 0.55g/t Au from 57m		
	13m at 1.07g/t Au from 24m	including	12m at 1.15g/t Au from 24m	including	2m at 3.13g/t Au from 30m
	15m at 1.14g/t Au from 44m	including	12m at 1.38g/t Au from 45m	including	1m at 9.78g/t Au from 53m
	3m at 0.22g/t Au from 65m				
	6m at 0.42g/t Au from 72m	including	3m at 0.55g/t Au from 73m		
KSRC010	1m at 0.14g/t Au from 10m				
	37m at 0.6g/t Au from 21m	including	2m at 2.07g/t Au from 25m	including	1m at 3.2g/t Au from 25m
		and	3m at 0.98g/t Au from 34m		
		and	3m at 1.78g/t Au from 40m	including	1m at 2.63g/t Au from 42m
		and	5m at 1.12g/t Au from 47m	including	1m at 2.59g/t Au from 50m
KSRC011	3m at 0.32g/t Au from 36m	including	1m at 0.51g/t Au from 36m		
	4m at 0.17g/t Au from 50m				
KSRC012	7m at 0.18g/t Au from 30m	in a localita a			
1/05 00 10	3m at 0.4g/t Au from 44m	including	1m at 0.5/g/t Au from 46m	including	
KSRC013	32m at 1.29g/t Au from 3m	and	10m at 1.93g/t Au from 12m	including	4m at 3.29g/t Au from 16m
	3m at 0 17alt Au from 15m	unu	sin at 2.07 g/t Au from 26m	nouunny	om at 2.90g/t Au from 28M
	1 m at 1.04 g/t Au from 54 m	includina	1m at 1 0/a/t Au from 5/m		
	1m at 0.12g/t Au from 59m		111 at 1.049/t Au 11011 3411		
NEWP.IDD0005	1m at 0 11g/t Au from 88m				
	13m at 0.28g/t Au from 148m	including	3m at 0.43g/t Au from 153m		
	1.91m at 0.33g/t Au from 169.09m	-	U		
	3m at 0.65g/t Au from 175m	including	2m at 0.96g/t Au from 175m		
	1m at 0.35g/t Au from 185m		-		
	1.13m at 0.34g/t Au from 188.87m				
	3m at 0.41g/t Au from 200m	including	1m at 0.99g/t Au from 200m		
	1m at 0.28g/t Au from 210m				
	2.71m at 0.1g/t Au from 213.29m				
	20.92m at 0.6g/t Au from 220.08m	including	10m at 0.91n/t Au from 231m		
	14m at 0.8g/t Au from 243m	including	9.69m at 1.04a/t Au from 247m	including	2m at 2.57g/t Au from 254m
		<u> </u>		0	

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
	8m at 0.47g/t Au from 266m	including	1.30m at 1.23g/t Au from 266m		
		and	3m at 0.55g/t Au from 271m		
PINC4	4m at 0.11g/t Au from 64m				
	4m at 0.1g/t Au from 108m				
	11m at 0.29g/t Au from 214m	including	1m at 0.69g/t Au from 215m		
		and	1m at 1.07g/t Au from 219m		
	8m at 0.27g/t Au from 228m	including	1m at 0.61g/t Au from 229m		
		and	1m at 0.69g/t Au from 235m		
	8m at 0.13g/t Au from 260m				
PINC5	13m at 1.32g/t Au from 107m	including	8m at 2.03g/t Au from 109m		3m at 3.73g/t Au from 109m
	1m at 0.55g/t Au from 150m	including	1m at 0.55g/t Au from 150m		
	19m at 0.48g/t Au from 157m	including	9m at 0.89g/t Au from 158m		
	2m at 0.65g/t Au from 209m	including	2m at 0.65g/t Au from 209m		
	10m at 1.2g/t Au from 214m	including	6m at 1.9g/t Au from 217m		1m at 7.27g/t Au from 217m
PINC28	4m at 1.35g/t Au from 20m	including	4m at 1.35g/t Au from 20m		
	4m at 0.12g/t Au from 48m				
	8m at 0.33g/t Au from 84m				
	8m at 0.2g/t Au from 140m				
	4m at 0.1g/t Au from 188m				
PINC29	28m at 0.96g/t Au from 80m	including	8m at 0.72g/t Au from 84m		
(* 4m composite		and	4m at 0.74g/t Au from 96m		
Samples Only)		and	4m at 3.84g/t Au from 104m	including	4m at 3.84g/t Au from 104m
	52m at 0.46g/t Au from 124m	including	4m at 0.6g/t Au from 132m		
		and	4m at 1.16g/t Au from 140m		
		and	4m at 1.47g/t Au from 152m		

All gold anomalies and intercepts from Providence prospect

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
KGRC23008	7m at 0.2g/t Au from 20m				
	14m at 2.0g/t Au from 32m	including	11m at 2.51g/t Au from 32m	including	4m at 5.63g/t Au from 39m
	5m at 0.12g/t Au from 49m				
KGRC23009	4m at 0.1g/t Au from 0m				
	45m at 0.52g/t Au from 49m	including	9m at 1.23g/t Au from 49m	including	1m at 2.17g/t Au from 56m
		and	1m at 1.01g/t Au from 64m		
		and	4m at 0.72g/t Au from 69m		
		and	2m at 0.99g/t Au from 82m		
		and	2m at 0.67g/t Au from 91m		
	26m at 0.91g/t Au from 124m	including	14m at 1.32g/t Au from 125m	including	2m at 4.45g/t Au from 132m
				and	1m at 3g/t Au from 138m
		and	1m at 0.54g/t Au from 142m		
		and	1m at 2.16g/t Au from 146m	including	1m at 2.16g/t Au from 146m
KGRC23015	9m at 1.02g/t Au from 24m	including	4m at 1.99g/t Au from 24m	including	2m at 3.08g/t Au from 25m
	3m at 0.43g/t Au from 38m	including	1m at 0.56g/t Au from 39m		
	4m at 0.13g/t Au from 51m				
	1m at 0.18g/t Au from 71m				
	23m at 1.08g/t Au from 80m	including	6m at 2.11g/t Au from 80m	including	3m at 3.16g/t Au from 83m
		and	4m at 1.37g/t Au from 91m	including	1m at 4.8g/t Au from 94m
		and	2m at 2.58g/t Au from 101m	including	1m at 4.09g/t Au from 102m
KGRC23016	13m at 0.19g/t Au from 44m	including	1m at 0.91g/t Au from 48m		
	1m at 0.35g/t Au from 82m				
	20m at 0.24g/t Au from 93m	including	3m at 0.74g/t Au from 96m		
	5m at 0.83g/t Au from 117m	including	4m at 0.98g/t Au from 117m	including	1m at 2.03g/t Au from 118m

Drillhole	Gold Anomalism (0.1 g/t cutoff)		Gold intercept (0.5 g/t cutoff)		Gold intercept (2.0 g/t cutoff)
	25m at 0.6g/t Au from 128m	including	1m at 1g/t Au from 128m		
		and	1m at 1.32g/t Au from 138m		
		and	10m at 1.12g/t Au from 143m	including	2m at 3.42g/t Au from 145m
	1m at 1.58g/t Au from 159m	including	1m at 1.58g/t Au from 159m		
	5m at 1.0g/t Au from 180m	including	5m at 1.0g/t Au from 180m	including	1m at 2.84g/t Au from 180m
KGRC23017	4m at 0.98g/t Au from 20m	including	2m at 1.71g/t Au from 20m	including	1m at 2.67g/t Au from 21m
	1m at 0.2g/t Au from 57m				
	1m at 0.11g/t Au from 74m				
	1m at 0.12g/t Au from 78m				
	3m at 0.49g/t Au from 84m	including	1m at 1.16g/t Au from 85m		
KGRC23018	8m at 0.48g/t Au from 68m	including	6m at 0.62g/t Au from 68m		
	6m at 0.28g/t Au from 82m				
	2m at 0.44g/t Au from 94m	including	1m at 0.55g/t Au from 94m		
	5m at 0.12g/t Au from 145m				
	1m at 0.13g/t Au from 155m				
KGRC23019	14m at 0.43g/t Au from 19m	including	6m at 0.77g/t Au from 24m		
	1m at 0.5g/t Au from 62m	including	1m at 0.5g/t Au from 62m		
	1m at 0.47g/t Au from 93m				
KGRC23020	1m at 0.16g/t Au from 55m				
	2m at 0.77g/t Au from 97m	including	1m at 1.4g/t Au from 97m		
	1m at 0.1g/t Au from 117m				
	7m at 0.36g/t Au from 137m	including	1m at 1.36g/t Au from 142m		
KGRC23021	3m at 0.27g/t Au from 16m				
	1m at 0.14g/t Au from 24m				
	1m at 0.11g/t Au from 102m				
	1m at 0.1g/t Au from 115m				
KGRC23022	5m at 0.17g/t Au from 38m				
	5m at 0.74g/t Au from 57m	including	2m at 1.57g/t Au from 57m	including	1m at 2.32g/t Au from 57m
	2m at 0.24g/t Au from 98m				
	3m at 1g/t Au from 110m	including	2m at 1.43g/t Au from 111m	including	1m at 2.19g/t Au from 111m
	9m at 0.92g/t Au from 128m	including	7m at 1.13g/t Au from 129m	including	1m at 5.15g/t Au from 132m
KGRC020	4m at 0.17g/t Au from 20m				
	1m at 0.19g/t Au from 60m				
	17m at 1.39g/t Au from 71m	including	10m at 2.11g/t Au from 71m	including	1m at 2.66g/t Au from 72m
				and	1m at 2.65g/t Au from 74m
				and	3m at 3.41g/t Au from 78m
		and	2m at 0.98g/t Au from 86m		
KGRC021	13m at 0.44g/t Au from 101m	including	3m at 1.13g/t Au from 109m		
	2m at 0.41g/t Au from 126m	including	1m at 0.58g/t Au from 126m		

APPENDIX 3 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut	KalGold Drilling
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 KalGold Drilling RC samples were taken as individual 1m split samples or composited to 4m intervals by PVC spear. All sampling lengths were recorded in KAL's standard sampling record spreadsheets. Visual estimates of sample condition and sample recovery were recorded by KAL. Industry standard practice was used in the processing of samples from the drill rig for assay, with 1m intervals of RC chips collected in green plastic bags. Assay of samples utilises standard laboratory techniques. Gold determination was completed on 40gm samples by AAS (Au only). An additional multi-element suite on selective holes was completed via mixed acid digest with either ICP-AES or ICP-MS finish. Further details of lab processing techniques are found in Quality of assay data and laboratory tests below. Historic Drilling Burdekin Resources NL (A58706): RC drill samples collected via conventional rig mounted cyclone to large plastic bags. Some composite sampling to maximum 6m interval via spear, but majority sampling at 1m interval either via spear or compressed air powered rotary spliter. RC samples submitted to Analabs for preparation of 100% of the sample by mixermill. Assay for Au by Fire Assay on a 50 gm sample charge with detection limited 0.01 g/t Au. No other elements analysed. Gutnick Resources NL (A63110): RC sampling included a mixture of 4m composite samples and 1m re-splits, collected using riffle splitter (75:25 ratio). Sample weights of 2-3 kg. RC samples submitted to Amale Laboratories in Kalgoorlie with sample preparation involving 80% passing 80#, followed by Aqua Regia digest with a 50 gm flame AAS graphite furnance (method code FA1). Lower detection limits of 10 ppb Au (FA1) or 0.02 g/t Au (AA7). Hole PINC4 1m re-splits additionally assayed for Co, Cu, Ni and As by both Analabs and Amdel Laboratories via analatyical method IC3E. Newmont Exploration Pty Ltd (A81567): Diamond core samples collected a
		 tinish (code FA002). Au lower detection limit 1 ppb Au. Renaissance Minerals Limited (A93735, A105183).
		 All drill programs utilised Genalysis-Intertek Laboratories in
		 Kalgoorlie. RC sampling involved 4m composites with anomalous zones subsequently re-submitted at 1m intervals. Composite RC samples submitted for Au analysis by Aqua Regia and multi-element. 1m resplit samples assayed for Au only by Fire Assay of 50 gm charge with no multi-element. Au analysis by both Aqua Regia and Fire Assay techniques provided 1 ppb Au lower detection limits.
Drilling technique	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details 	 KalGold Drilling In total, 22 drill holes for 3516 have been completed by KalGold in three separate drill programs through 2023. All Codelline upon completed by KalGold in three separate drill programs through 2023.

sampling bit or other type, whether core is oriented and if so, by what method,

Criteria	JORC Code explanation	Commentary
	etc).	Historic Drilling • Burdekin Resources NL (A58706):
		 RC Drilling completed by Leonora Drilling using a truck mounted RAB rig equipped with an on board 600cfm x 200psi compressor, modified for RC by changing over of the top drive rotary head and addition of a trailer mounted booster compressor. RC drilling uitilised 3m NQ diamond drill rods with inner tubes and either a conventional down hole hammer plus a crossover sub, or a face sampling hammer. RC hole diameter was 4^{1/4°}.
		Gutnick Resources NL (A63110):
		 RC drilling completed. No detailed descriptions available but assumed to include industry standard techniques.
		 Newmont Exploration Pty Ltd (A81567):
		 Diamond Drilling completed by McKay Drilling. No detailed description available but assumed to include industry standard techniques.
		Renaissance Minerals Limited (A93735, A105183):
		 RC drilling completed by K & J Drilling. Nominal hole size 5^{1/2°}.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse 	 KalGold Drilling RC chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was high. RC Chip sample condition recorded using a three-code system, D=Dry, M=Moist, W=Wet. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, using water injection at times of reduced air circulation, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
	material.	Historic Drilling • Burdekin Resources NL (A58706):
		 Visual percentage estimates of recovery recorded for RC drill samples. Sample moisture comment (wet/dry) recorded. General commentary noted less than ideal RC sample weights due to RC rig set up, although no known relationship between sample recovery and grade documented.
		Gutnick Resources NL (A63110):
		 No drill sample recovery information documented.
		Newmont Exploration Pty Ltd (A81567):
		 Diamond core recoveries not documented.
		Renaissance Minerals Limited (A93735, A105183):
		 No drill sample recovery information documented.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography 	 KalGold Drilling Visual RC geological logging was undertaken on 1m intervals for all drilling at the time of drilling, using standard KAL logging codes. Planned drill hole target depths were adjusted by the geologist during drilling as required. The geologist also oversaw all sampling and drilling practices. KAL employees supervised all drilling. A small selection of representative chips was collected for every 1m interval and stored in chip-trays for future reference.
	 The total length and percentage of the relevant intersections logged. 	<u>Kirgella Tenure</u> • Burdekin Resources NL (A58706):
		 Entire length of RC drill holes geologically logged. Qualitative logging – weathering, moisture, colour, lithology, mineralisation, alteration and veining. Quantitative logging – sample quality.
		Gutnick Resources NL (A63110):
		 Geological logging completed for RC drill holes. Geological logs are descriptive and include lithology, grain size, weathering, alteration, mineralogy, regolith, veining and vein texture.

Criteria	JORC Code explanation	Commentary
		Newmont Exploration Pty Ltd (A81567):
		 All holes geologically logged in full. Geological logs are descriptive and include weathering, colour, grain size, lithology, texture, mineralogy, alteration and veining.
		Renaissance Minerals Limited (A93735, A105183):
		 All holes logged in full. Geological logs are descriptive and include lithology, colour, weathering, regolith, grain size, foliation, texture, mineralogy and alteration, with sulphide and veining percentage.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 KalGold Drilling RC drilling utilised both 4m composite samples with resampling of anomalous zones of mineralisation at 1m intervals, or direct 1m individual split samples. 1m samples were recovered directly using a 15:1 rig mounted cone splitter during drilling into a calico sample bag. Sample target weight was between 2 and 3kg. In the case of wet clay samples, grab samples were taken from the sample return pile, initially into a calico sample bag. Wet samples were stored separately from other samples in plastic bags and riffle split once dry. 4m composite samples were sampled using PVC spear on 1m bulk reject sample intervals, collected from below the cone splitter. Where the sample was wet, a scoop was used instead of the PVC spear. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream every 10 samples on a rotating basis. Standards were quantified industry standards. Every 30th sample a duplicate sample was taken using the same sub sample technique as the original sample. Sample sizes are appropriate for the nature of mineralisation. All sampling is appropriate to the grainsize of the material being sampled. Historic Drilling Burdekin Resources NL (A58706): RC drill samples collected at 1m intervals via spear or compressed air powered rotary splitter. No documentation on use of field duplicates. All samples submitted to Analabs with preparation of 100% of the sample by mixermill. No further documentation available. Gutnick Resources NL (A63110): RC 4m composite samples collected via scoop. RC re-split 1m
		 samples collected via riffle splitter at a ratio of 75:25. All samples submitted to Amdel Laboratories pulervised to 80% passing 80# particle size. No further information documented. Newmont Exploration Pty Ltd (A81567):
		 Diamond drilling samples all half core.
		 No further information documented.
		Renaissance Minerals Limited (A93735, A105183):
		 RC composite samples collected at 4m intervals, with follow up re- sampling at 1m intervals. No further information documented.

Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 KalGold Drilling All samples were submitted to Kalgoorlie Bureau Veritas (BV) laboratories. Samples were prepared and assayed for Au (only) at BV Kalgoorlie, with selected sample pulps subsequently transported to BV Perth for additional multi-element determination. All samples were sorted, wet weighed, dried then weighed again. Primary preparation has been by crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which has then been pulverised in a vibrating pulveriser. All coarse residues have been retained. Only gold assay results are reported. The samples have been analysed by Firing a 40 g (approx.) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process. Au has been determined by Atomic Absorption Spectrometry (AAS).
		 RC samples assayed for Au by Fire Assay on a 50 gm sample charge with AAS finish. Detection limit was 0.01 g/t Au. No other elements analysed. No QAQC documentation available.
		Gutnick Resources NL (A63110):
		 RC samples assayed either by Aqua Regia digest with a 50 gm flame AAS graphite furnance (method code AA7), or Fire Assay using a 50 gm charge with AAS finish (method code FA1). Lower detection limits of 10 ppb Au (FA1) or 0.02 g/t Au (AA7). Hole PINC4 1m re-splits additionally assayed for Co, Cu, Ni and As by both Analabs and Amdel Laboratories via analatyical method IC3E. No QAQC documentation available.
		Newmont Exploration Pty Ltd (A81567):
		 Diamond core samples submitted to Ultratrace Laboratories for Au, Pt and Pd analysis via Fire Assay on a 40 gm charge with ICP-OES finish (code FA002). Au lower detection limit 1 ppb Au. Newmont QAQC protocols not documented in detail. Ultratrace Laboratories conducted regular internal lab check QAQC assaying, with results available.
		Renaissance Minerals Limited (A93735, A105183):
		 All drill programs utilised Genalysis-Intertek Laboratories in Kalgoorlie. RC sampling involved 4m composites with anomalous zones subsequently re-submitted at 1m intervals. Composite RC samples submitted for Au analysis by Aqua Regia and multi-element. 1m re-split samples assayed for Au only by Fire Assay of 50 gm charge with no multi-element. Au analysis by both Aqua Regia and Fire Assay techniques provided 1 ppb Au lower detection limits. No documentation available regarding QAQC protocols.
Verification of	The verification of significant	KalGold Drilling
sampling and assaying	 intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. KAL also inserted QAQC samples into the sample stream at a 1 in 10 frequency, alternating between duplicates splits, blanks (industrial sands) and standard reference materials. Assay results are pending.
		 Historic Drilling No documentation on verification of significant intersections available. Twin holes not used by any of the historic operators noted above. Data entry procedures, verification and storage protocols also not documented.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 KalGold Drilling All drill hole collars have initially been surveyed using a handheld Garmin GPS with accuracy of 3-5m. Follow up surveying via an external licenced survey contractor was completed via RTK DGPS system with 3-digit accuracy. All coordinates are stored in the exploration database referenced to the MGA Zone 51 Datum GDA94. Gyroscopic downhole surveys were undertaken with hole orientation measurements gathered every 10m during descent and then on ascent of the tool.

		• Topography through the Kirgella area of interest is flat to gently undulating. The current day topographic surface has been constructed from SRTM derived 1-Second Digital Elevation Model data, sourced from the publicly available Elvis Elevation and Depth system (https://elevation.fsdf.org.au/).
		<u>Historic Drilling</u> • Burdekin Resources NL (A58706):
		 All RC drill holes were surveyed using a differential GPS system on the AMG Datum. Collar location accurate to +/- 5m. No downhole survey information recorded or available.
		Gutnick Resources NL (A63110):
		 All RC drill hole collars locations recorded on the AGD84 Datum.
		 Downhole single shot Eastman camera used to record collar dip (only) for RC holes PINC4 and PINC5. No additional downhole surveying completed.
		Newmont Exploration Pty Ltd (A81567):
		 All drill hole collar locations recorded on the GDA94 Zone 51 datum. No further information documented. Downhole single shot and/or multishot surveys with unknown tool type completed for all Diamond drill holes.
		Renaissance Minerals Limited (A93735, A105183):
		 All drill hole collar locations recorded on the GDA94 Zone 51 datum. No further information documented. RC drill hole downhole surveys completed using a gyro post drilling by survey contractor, Surtron Technologies. Diamond hole surveys completed using a single shot Eastman camerat operated by Strata Drilling.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 KalGold Drilling Drilling was undertaken across five separate E-W oriented drill lines at Kirgella Gift. Holes were designed to infill and extend the existing historic drill coverage, and approximately follow a 50x20m to 50x40m pattern. Drilling at Providence was completed on six E-W section lines to confirm and extend prior historic RC drilling. Collars are on 50x40m spacing. A single hole was completed at Kirgella North. <u>Historic Drilling</u> Historic drilling across E28/2654-56 has been completed by numerous operators over a 15-year time period (1999-2014). Historic drill spacing is variable, reflecting the campaign nature of prior work with successive drill programs building on earlier work.
Orientation of data • in relation to geological structure •	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 KalGold Drilling All drill holes were angled to the east. They were designed to confirm mineralisation near surface and at depth. Historic drill holes were utilised to assist with delimiting mineralisation distributions. Historic data indicates that gold mineralisation dips steeply to the west. With this assumption in mind, drill orientation has been optimal, with most drill holes intercepting mineralised structures approximately normal to their orientation. Historic Drilling At the Kirgella Gift and Providence Prospects, all historic RC drilling has been angled, predominantly at -60° towards 090°.
Sample security •	The measures taken to ensure sample security.	 KalGold Drilling For RC programs, samples are collected and accounted for by KAL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Kalgoorlie from logging site by KAL employees/ consultants and submitted directly to BV Kalgoorlie. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for. Historic Drilling

		historic drilling campaigns referred to above.
Audits or reviews	 The results of any audits or reviews or sampling techniques and data. 	 f KalGold has completed a review and compilation of all digital historic drilling data documented in WAMEX reports. No critical issues have been noted. The BV Laboratory was visited by KAL staff in May 2022 and the laboratory processes and procedures were reviewed and determined to be robust.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Kirgella Cift and Providence are located on E28/2655, in which KalGold currently has a farm-in agreement. The farm-in transaction includes the following fenure: Kirgella: E28/2654, E28/2655 and E28/2856. Prinjin South: P31/2009, P31/2100, P31/2102 and E31/1127. Rebecca West: E28/3135 and E28/3136. Project located approximately 140km east-northeast of Kalgoorlie and falls within both the Pinjin and Yindi (Rebecca West tenements only) pastoral stations. Transaction 1: Pinjin Kirgella farm-in The vendors and KalGold have agreed upon a \$2.2 million valuation for the project. The tenure at Pinjin South (P 31/2009, P 31/2100, P 31/2102, and E 31/1127) and Kirgella (E 28/2654, E 28/2655, and E 28/2656) is the subject of 3 parallel agreements, identical in all but the particulars related to the ownership and tenure details. The vendors are local prospectors Mr S Kean, Mr S Freeth., and a deceased estate represented by Mr Freeth. Details of the agreement are as follows: Option period \$100.000 option fee for 2 years (not part of the \$2.2 million) Within 2 years, KalGold must spend a minimum \$1.4 million on drilling, including assays and directly related costs (e.g. pad prep, rehab, surveys etc.) with an equivalent of 11,500m of RC drilling. At this early stage, this is expected to be overwhelmingly focussed of these agreements. If \$1.400.000 is not spent on RC/diamond drilling then the residual is the subject of these agreements. If \$1.400.000 is not spent on RC/diamond drilling then the residual is to be paid to the vendors. This is to ensure that funds are spent advancing the project, drill-testing and assessing mineralisation within the project area. Option exercise - KaGOd acquires 75% of the project. <u< th=""></u<>

Criteria	JORC Code explanation	(Commentary
		•	Previous heritage surveys have identified some areas of interest over E28/2654 - place ids 23972-975, 23984-990, 23993 & 23959-960. In addition, a broad heritage overlay exists over the extents of Lake Rebecca (place id 19142), which impinges on the southern and western edges of E28/2654. None of the above heritage sites overlap with initial areas flagged by KalGold for early stage exploration field work and drilling.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	•	 Kirgella Tenure The existing project tenure and surrounds has been explored by numerous operators since the 1970's, with an initial focus on nickel, base metals and uranium potential. BHP Minerals entered into a Joint Venture farm in with Uranez in the mid 1980's to search for gold within Pinjin and Rebecca palaochannel systems, drilling several regionally spaced RC holes prior to assessing trial insitu cyanide leach operations at the Magpie Prospect (off tenure). Economic recoveries were reported to be disappointing, and the project abandoned. Burdekin Resources worked the ground in the mid to late 1990's, discovering gold mineralisation at Kirgella Gift through RAB drilling in 1999 while following up an earlier maglag soil anomaly. Gutnick Resources farmed into the project and completed additional RAB and limited RC drilling. Newmont Exploration acquired the ground through a farm in and Joint Venture agreement with Gel Resources and Great Gold Mines (formerly Gutnick Resources) in 2005. Newmont completed a considerable amount of work including ground gravity surveys, airborne magnetics and extensive regional RAB and Aircore drilling. Follow up diamond and RC drilling led to the discovery of anomalous gold mineralisation at the T12 and T15 prospects. Due to internal budgeting constraints and competing priorities following the Global Financial Crisis, very little follow up work was completed at T12 and T15. Newmont subsequently divested the project to Renaissance Minerals in September 2010. Renaissance Minerals completed additional Aircore and limited follow up RC and diamond drilling at both T12 and T15 prospects. At Kirgella Gift, 19 RC holes for 3,116m were completed to follow up anomalous Aircore results, leading to the discovery of the Providence Prospect. Renaissance Minerals subsequently merged with Emerald Resources in October 2016 to focus on Cambodian gold projects. No substantial exploration activity has occurred across the Kirgella tenur
Geology	 Deposit type, geological setting and style of mineralisation. 	•	The Kireglla tenure is located on the eastern margin of the Kurnalpi Terrane of the Archean Yilgarn Craton of Western Australia. Locally the project areas straddles the boundary between the Edjudina and Linden Domains and overlies the southern end of the Laverton Tectonic Zone, a major transcrustal structure associated with gold mineralisation within the region. The greenstone belts within these Domains are made up of a thick package of intercalated sedimentary and mafic and felsic volcanic rocks, dolerites and ultramafic rocks. These belts are structurally complex with common northeast, northwest and early north-south trending faults and lineaments. Internal granitoids and porphyries are also common and metamorphic grade is typically Greenschist to Amphibolite facies, with metamorphic grade increasing towards the east. Late stage east-west oriented Proterozoic dolerite dykes cross cut all stratigraphy through the northern and southern ends of the Kirgella tenure area. Outcrop is generally poor and accounts for less than 5% of the project. Alluvial cover is extensive and can reach depths of 80m or more locally. Gold mineralisation at Kirgella Gift and Providence, the most advanced prospect in the Kirgella Gift and Providence, the most advanced prospect in the Kirgella Gift and Providence, the shear hosted system characterised by mylonised schistose rocks altered to talc, chlorite, carbonate, sericite/muscovite, magnetite and sulphide. The shear strikes north south and dips steeply to the west.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drill hole information discussed in this release are listed in "Appendix 2 – Collar location data".
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be 	 Drill hole samples have been collected and assayed over both 1m down hole intervals, and variable downhole composite intervals. Zones of gold anomalism reported here are calculated at a 0.1g/t Au lower cut-off on a minimum intercept of 1m (*4m in the case of 4m composite samples) and a maximum internal waste of 2m. Mineralised gold intercepts reported here are calculated at a 0.5g/t Au cut-off on a minimum intercept of 1m (*4m in the case of 4m composite samples) and a maximum internal waste of 2m. Mineralised gold intercepts reported here are calculated at a 0.5g/t Au cut-off on a minimum intercept of 1m (*4m in the case of 4m composite samples) and a maximum internal waste of 2m (*4m in the case of 4m composite samples). Secondary intercepts are defined using a 2.0g/t cut-off and the same intercept and internal waste characteristics. No metal equivalent calculations have been used in this assessment.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 All RC and diamond drill holes were angled. All intercept widths reported are down hole lengths. No attempt has been made here to report true widths. Observations from Kirgella Gift and Providence support a north-south striking, steeply west dipping mineralisation model. This suggests drill orientations were perpendicular to the trend of mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to diagrams in the current release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results are reported either in the text or in the associated appendices. The results presented here mark significant results that are open in several directions that require systematic follow-up. It should be noted that, as per many gold mineralised systems, results indicate that gold assays vary from below detection up to very high grade results over several metres.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 High resolution aeromagnetic data, completed by various historic operators, is available across the entirety of the project tenure and assists KalGold with ongoing geological interpretation and targeting. Additional historic ground gravity data and airborne electro-magnetic (EM) data has previously been collected by Newmont over the Kirgella tenure. No potentially deleterious or contaminating substances have been noted in historic WAMEX reports or observed in work completed by KalGold.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	 Further work will include finalisation of a JORC (2012) compliant Mineral Resource Estimate (MRE) for Kirgella Gift and Providence. The MRE is expected to inform future work at Kirgella Gift and Providence, including diamond drilling for structural, geotechnical and metallurgical programs, plus further infill and extensional RC drilling. Diagrams highlighting some of the areas for future work programs are shown in the body of the report.